

СОВРЕМЕННЫЕ МЕТОДЫ БЕЛКОВОЙ СТАБИЛИЗАЦИИ ВИН

СОВРЕМЕННЫЕ МЕТОДЫ БЕЛКОВОЙ СТАБИЛИЗАЦИИ ВИН

Прозрачность, является одним из самых важных характеристик, отображающих качество белых и розовых вин. Существует множество различных видов помутнений, но наиболее распространены белковые помутнения. Белковая нестабильность всегда была серьезной проблемой в производстве белых и розовых вин. Образование белковых помутнений в вине, происходит, либо путем медленной денатурации, связанной от высоких температур хранения или, индуцируется этанолом с течением времени (Pocock et al., 2003).

Рис.1 Схематическое изображение формирования белковых помутнений

Белки, выпадающие в осадок, попадают в вино исключительно из винограда, обладают молекулярной массой, ~ 20-30 kDa, являются представителями классов белков -тауматинов и хитиназ, их синтез связан с паталогическими изменениями, происходящими при поражении Vitis vinifera микроорганизмами или при повреждении растения во время сбора урожая.

Что влияет на уровень нестабильности белков?

• Сорт винограда: Совиньон Блан, Семильон, Пино Гри, Грюнер Вельтлинер

Сезон уборки винограда:

• Подгруппа белков РК (белков, связанных с патогенезом), называемая Тауматин

Хитиназы, синтез которых, связанн со стрессом винограда (Marangon et al., 2010c; Marangon et al., 2011b).

- Более теплый климат = больше нестабильности белка (Salazar 2012)
- Стресс, связанный с погодными условиями ветром, засухой и засоление почв = белки более нестабильные
- Поражение Botrytis и мучнистой росе или другим воздействиям патогенов

Переработка-брожение:

• Температура брожения, чем более высокая температура - тем меньше PR белков (Ndlovu et al. 2019)

За последние три десятилетия мы наблюдали общее увеличение уровня нестабильности белков в белых винах по всему миру. Это приводит к использованию гораздо больших дозировок бентонита, необходимого для полной стабилизации вин, и может быть связано с изменяющимся климатом или с изменениями в культивации винограда и методом уборки урожая.

Protein Stability vs. Vintage

■ #s bentonite /1000 gals to stabilize...

Количество бентонита, необходимое для достижения стабильности белка, может варьировать от 0,1 до 1-3 г / л для ароматических сортов, таких как Совиньон Блан. Некоторые вина, особенно с высоким уровнем рН, или полученные из винограда, выращенного в жарком климате, могут нуждаться в еще более высоких дозировках бентонита. Обработка бентонитом, хотя и эффективна, порождает различные проблемы. Во-первых, эта процедура не избирательна только к белкам и может влиять на качество вина, удаляя ароматические вещества и снижая полноту вкуса.

Побочное воздействие бентонита на вино:

- Высокая дозировка бентонита удаляет полезные маннопротеины (Rodriguez 2012).
- Уменьшает содержание терпенов, C13-норизопреноиды, C6 спиртов, сложных эфиров и тиолов (Moio et al. 2004, Armada and Falque 2007, Baiano et al. 2012, Vela et al. 2012).
- Потери вина
- Внесение катионов Na⁺; Ca²⁺

Во-вторых, оклейка бентонитом вызывает потери объема вина, которые оцениваются от 3% до 5%, что представляет собой наиболее значительную стоимость использования этого препарата при обработке. Утилизация осадков отработанного бентонита представляет собой значительные затраты.

По этим причинам компания **Enartis** предлагает новые методы, которые виноделы могут использовать для белковой стабилизации, что поможет сохранить качество, снизить затраты и повысить устойчивость вин.

Инструменты для достижения белковой стабильности

Бентонит

Несмотря на проблемы, связанные с его применением, обработка бентонитом остается наиболее распространенной и эффективной практикой стабилизации белков в винодельческой промышленности. По этой причине стоит более глубоко изучить его использование. На рынке существует несколько видов бентонитов, и не все они одинаково эффективны для стабильности белков. Их энологические свойства и применение в основном зависят от природы основного обменного катиона (таблица 1). Наличие примесей (кварц и минералы, отличные от монтмориллонита) или крупных частиц, которые могут

повредить оборудование (фильтры, мембраны, насосы, центрифуги и т. Д.), делает их менее подходящими для применения в виноделии.

Таблица 1: Типы бентонитов и их основные свойства

		Основной обменный катион	Способност ь к набуханию	Удалени е белков	Осветляющ ая способност ь	Компактн ость осадка
Натуральные	Натриевый бентонит	Натрий	+++	+++	++	+
бентониты	Кальциевый бентонит	Кальций	+	+	+++	+++
Активированны е Бентониты*	Кальциевый бентонит, активированн ый карбонатом натрия	Натрий	++/++	+++	++	+/++

^{*}Свойства активированного бентонита зависят от уровня активации. Они могут иметь промежуточное поведение – среднее между кальциевым и натриевым или даже превосходящее натриевый

Таблица 2: Бентониты производства Enartis

	Тип бентонита	Форма препарат а	Способ ность к набуханию	Удаление белков	Осветляющ ая способ - ность	Компактно сть осадка
БЕНТОЛИТ СУПЕР	Кальциевый, активированн ый натрием	Порошок	++	++	+++	+++
ПЛУКСБЕНТОН Н	Натуральный натриевый	Гранулы	+++	+++	++	++
ПЛУКСКОМПА КТ	Кальциевый, активированн ый натрием	Гранулы	+	+	++++	++++
ФАРМАБЕНТ	Кальциевый, активированн ый натрием. Фармацевтиче ское качество	Порошок	++++	++++	+	+

На каком этапе производства нужно использовать бентонит

Для вин, требующих высоких дозировок для обеспечения белковой стабильности, всегда возникает общий вопрос: когда лучше применять бентонит - обрабатывать сусло или вино? Сусло всегда более богатое белковыми веществами чем вино, и это с одной стороны уменьшает эффективность применения бентонита. Но учитывая, что одной из основных проблем, связанных с использованием бентонита, является потеря ароматических веществ, настоятельно рекомендуется обрабатывать не вино, а сусло (Lambri et al. 2012). В сусле большинство ароматических соединений присутствует в связанной форме, менее поглощаемой бентонитом. Кроме того, при обработке сусла ароматические вещества, образующиеся в ходе процесса брожения, не удаляются. Другие авторы, сообщили, что

лучшее время для добавления бентонита - брожения, потому что для обработки требуется минимальное его количество и сопутствующее удаление ароматических соединений, по-видимому, минимальное (Miller et al. 1985, Pocock et al. 2011, Lira et al. 2015). Есть также исследования, показывающие, что обработка бентонитом более эффективна в готовом вине (Somers and Ziemelis 1973, Puig-Deu et al. 1999).

Как видно нет единого мнения касательно наилучшего времени обработки бентонитом, однако если рассматривать вопрос с точки зрения сохранения органолептических свойств тиоловых ароматических сортов таких как Совиньон Блан, современные исследования показывают, что обработка бентонитом сусла перед брожением или в начале брожения может негативно отразиться на содержании ароматических веществ в готовом вине.

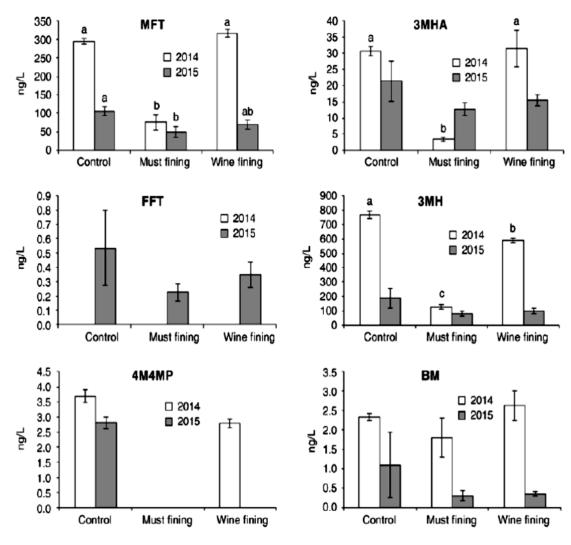


Рис 2 Содержание летучих тиолов — соединений, формирующих аромат Совиньон Блан выраженное в нг/л. Сусло, было обработано в начале брожения (Must fining), и готовое вино (Wine fining), одной дозировкой бентонита в ходе сезонов 2014-2015. Контролем служили образцы сусла и вина не обработанные. Значения представляют собой средние значения независимо проведенных брожений (n=2), столбцы ошибок - это два стандартных деления а, b, c: разные буквы обозначают среднее значение среди выборок по критерию Дункана после статистически значимого одностороннего ANOVA. (MFT) - 2-метил-3-фурантиол

(FFT) – 2 фурфурилтиол

(4М4МР) – 4 меркапто-4метилпентан-2он

(3MHA) - 3 меркаптогексил ацетат (3MH) — меркаптогексан-1ол (BM) — бензил меркаптан

(Eduardo Vela, Hernandes-Orte, Eva-Castro, Vicente Ferreira, Ricardo Lopez. Effect of Bentonite on Wine Aroma. Am.J. Enol. Vitic. 68:1 2017).

Согласно проведенным исследованиям, обработка сусла бентонитом, таких сортов как Совиньон Блан, Гевюрцтраминер и др., снижает содержание тиоловых прекурсоров, что может значительно снижает интенсивность аромата в готовом вине.

Методы снижения дозировок бентонита

Хотя в настоящее время нет экономической и эффективной технологической альтернативы бентониту, использование танинов, маннопротеинов и ферментов может помочь снизить его дозировку и минимизировать негативные последствия, связанные с его применением.

Танины

Танины могут реагировать с белками и вызывать их выпадение в осадок. Среди различных классов танинов наиболее активными являются конденсированные танины (извлеченные из винограда, квебрахо и другой экзотической древесины). Кроме того, галловые и эллагеновые танины могут быть очень эффективными для этого применения.

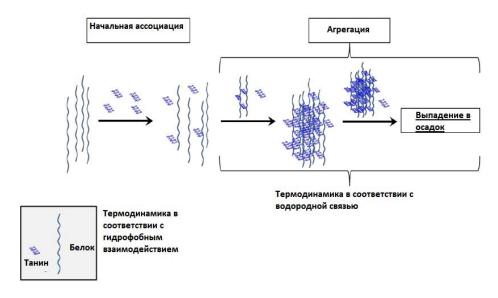


Рис. 3 Взаимодействие белков и танинов

Эффективность танинов для достижения белковой стабильности вина намного ниже, чем у бентонита. Тем не менее, добавления танинов, начиная со стадии сусла и в течение всего процесса созревания вина, может помочь снизить содержание белков, одновременно обеспечивая антиоксидантную защиту

окраски и аромата вина. Для улучшения белковой стабильности наилучшим способом является добавление танина на стадии сусла или во время брожения. На ранней стадии брожения дозировка может быть довольно высокой (до 10-15 г/гл) без какого-либо риска изменения сенсорного профиля вина. Ближе к розливу, можно вносить только небольшие дозы.

Кроме того, некоторые танины, например, такие как **Энартис Тан Скин** – высокомолекулярный **танин**, полученный из кожицы белого винограда,

содержат высокую концентрацию прекурсоров тиоловых ароматических веществ, что позволяет получить более ароматные вина Совиньон Блан. Его применение, особенно важно в случае обработки сусла бентонитом для обеспечения ранней белковой стабильности.

	Control	Tannin low precursor content	Enartis Tan Skin high precursor content
Gewürztraminer	Mean $(n = 6)$	Mean $(n = 6)$	Mean (n = 6)
3MH (ng L-1)	195	175	558
3MHA (ng L-1)	5	5	20
Sauvignon Blanc	Mean (n = 6)	Mean $(n = 6)$	Mean (n = 6)
3MH (ng L-1)	642	536	1168
3MHA (ng L-1)	67	45	114

Рис.4 Применение танина Энартис Тан Скин позволяет значительно повысить концентрацию, прекурсоров тиоловых ароматических веществ 3-S-глютатионил меркаптогексан-1-ол и 3-S-цистенил меркаптогексан-1-ол, при производстве вин из таких сортов как Совиньон Блан и Гевюрцтраминер.

("Importance of polyfunctional thiols on semi industrial Gewurztraminer wines and the correlation to technological treatments", T. Roman et al., Eur Food Res Technol 2017).

Таблица 3: Танины Enartis, которые улучшают белковую стабильность во время брожения

	Состав	Удалени	Антиоксида	Органолептический эффект			T
		е	нтный	Структ	Терпко	Мягко	Аромат
		белков	эффект	ура	СТЬ	СТЬ	
Тан Антиботритис	Галовый, Дигалловый и эллагеновый танины	2	5	2	2	1	Нейтральны й
Тан Аром	Галовый, Дигалловый танины, дрожжевые производные	2	5	2	2	2	Ананас, грейпфрут, маракуйа
Тан Блан	Галловый танин	1	5	2	2	1	Нейтральны й
Тан Цитрус	Галловый и конденсированн ые танины	3	4	2	2	2	Цитрус, белые цветы
Тан Клар	Эллагеновый танин	4	3	3	3	1	Нейтральны й, дерева
Тан Элеганс	Конденсированн ый танин из экзотической древесины и кожицы белого винограда	4	4	2	1	4	Косточковы е плоды, Белые цветы
Тан Скин	Конденсированн ый танин из кожицы белого винограда	3	3	2	2	2	Косточковы е плоды, Ананас, маракуйа

Ферментные препараты

Достижение белковой стабильности с помощью ферментов является особенно привлекательной альтернативой бентониту, поскольку этот метод позволяет минимизировать потери объема вина и его качества. Начиная с 1950-х годов, исследования были сосредоточены на поиске протеаз, которые могут разрушать белки вина, вызывающие помутнения. Трудность в принятии этого решения заключается в том, что белки, как правило, связаны с нестабильностью вина. Наиболее вовлеченными белками являются: хитиназа и тауматин-подобные белки, оба очень устойчивы к протеазам в их естественной форме. Фактически, после флэш-пастеризации образующие помутнения белки разворачиваются и становятся более восприимчивыми к протеазной активности. Тем не менее, применение протеаз в брожении вина может привести к снижению дозировок бентонита, необходимого для стабилизации на 20-25%.

ЭНАРТИС ЗИМ АРОМ МП

Микрогранулированный ферментный препарат для мацерации белого и розовой винограда. Его вторичные действия - гемицеллюлазы и протеазы, разрушают клеточные стенки и мембраны, локализованные в кожице. Это вызывает не только растворение предшественников ароматических веществ, содержащихся в вакуоле, но также и тех, которые связаны с твердыми клеточными структурами. Вина, обработанные **Enartis Zym Arom MP**, имеют ароматический профиль, характеризующийся интенсивными фруктовыми ароматами, комплексностью и устойчивостью. Кроме того, протеазная активность способствует белковой стабилизации, позволяя снизить дозировки бентонита на 20-25% (график 1).

Применение: мацерация белого и красного винограда; производство белых, красных и розовых вин с фруктовыми тонами аромата; улучшенная белковая стабильность.

Дозировка: 20-40 г / т

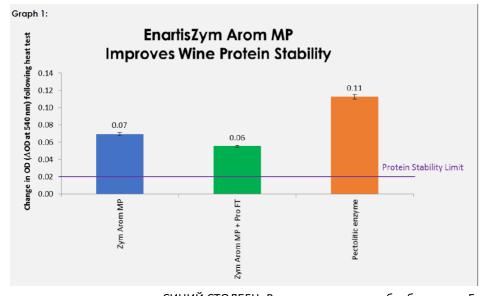


Рис.5 Влияние Enartis Zym Arom MP на белковую стабильность вина. Выше приведены результаты обработки вина после испытания на термостабильность (2 часа при 80°С). Вино устойчиво к белкам, когда изменение оптической плотности при 540 нм ниже 0.02.На

диаграмме представлено: СИНИЙ СТОЛБЕЦ: Вино из винограда, обработанного EnartisZym Arom MP во время мацерации.ЗЕЛЕНЫЙ СТОЛБЕЦ: вино из винограда, обработанного EnartisZym Arom MP во время мацерации и Enartis Pro FT во время инокуляции дрожжей. ОРАНЖЕВЫЙ СТОЛБЕЦ: Контроль - Вино из винограда, обработанного пектолитическим ферментом. Средние результаты показаны в трех повторности. Обработка EnartisZym Arom MP увеличила уровень белковой стабильности вина

Дрожжевые маннопротеины

Хорошо известно, что хранение сухих вин на осадке приводит к снижению дозировки бентонита, необходимой для достижения белковой стабильности перед розливом в бутылки. Эффект можно объяснить наличием дрожжевых маннопротеинов, которые высвобождаются естественным путем во время брожения или в результате автолиза во время выдержки вина на осадке.

Было доказано, что маннопротеины защищают вина от осаждения белка. Механизм защиты от мутности остается неясным: они могут защищать белок от тепловой денатурации или, если белки денатурированы, предотвратить образование крупных нерастворимых агрегатов.

Чтобы увеличить содержание маннопротеинов в вине и усилить его благотворное влияние на белковую стабильность, можно добавлять производные дрожжей на стадии брожения или во время выдержки вина.

Таблица 5: Препараты Enartis производные дрожжей, улучшающие белковую стабильность вин

		Состав	Антиоксидант ный эффект	Усиление аромата	Улучшени е вкуса	Предотвращение преждевременн ого старения вина
	Энартис Про Аром	Дрожжевые оболочки содержащие серосодержащие пептиды	xx	XXX (Больше тиолов)	х	xx
	Энартис Про Бланко	Инактивированные дрожжи	XX	XXX (Больше тиолов)	XX	xx
БРОЖЕНИЕ	Энартис Про ФТ	PVI/PVPP, дрожжевые оболочки содержащие серосодержащие пептиды	xxx	XXX (Больше тиолов)	xx	xxx
(O49	Энартис Про Р	Дрожжевые оболочки, богатые маннопротеинами	Х	х	х	х
	Энартис Про УНО	Дрожжевые оболочки, выделяющие легко растворимые маннопротеины	Х	х	xx	Х
	Энартис Про ЭКС П	PVI/PVPP, дрожжевые оболочки	XXX	х	xx	xxx
Выдержка	Сурли Элеваж	Дрожжевые оболочки, выделяющие легко растворимые маннопротеины	xx	х	xxx	х
	Сурли УАН	Ферментативно обработанные инактивированные дрожжи	xx	х	xxx	xx